Knigionline.co » Наука, Образование » Программируя Вселенную. Квантовый компьютер и будущее науки

Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд

Программируя Вселенную. Квантовый компьютер и будущее науки
  • Название:
    Программируя Вселенную. Квантовый компьютер и будущее науки
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Анна Стативка
  • Издательство:
    Альпина Диджитал
  • Страниц:
    126
  • ISBN:
    978-5-91671-270-4, 978-5-91671-324-4
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Любой атом Вселенной, а не лишь только всевозможные макроскопические объекты, способен беречь информацию. Акты взаимодействия атомов возможно обрисовать как простые закономерные операции, в коих заменяют собственные смысла квантовые биты – простые единицы квантовой инфы. Феноменальный, но перспективный расклад Сета Ллойда разрешает элегантно решить вопрос о неизменном усложнении Вселенной: так как в том числе и случайная и довольно краткая программка в ходе собственного выполнения на компе имеет возможность предоставить в высшей степени заманчивые итоги. Галактика каждый день обрабатывает информацию – будучи квантовым компом большого объема, она все время вычисляет личное будущее. И в том числе и эти фундаментальные действия, как рождение жизни, половое размножение, возникновение интеллекта, возможно и надлежит рассматривать как поочередные революции в обработке инфы.
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»

Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги

В предыдущих разделах мы описали основы квантовых вычислений. Скоро мы увидим, что ротации отдельных квантовых битов вместе с операциями «условное не» составляют универсальный набор квантовых логических операций. Мы помним, что «и», «или», «не» и «копировать» составляют универсальный набор классических логических операций; любое желаемое логическое преобразование можно построить из этих базовых элементов. Сходным образом любое желаемое преобразование набора квантовых битов можно построить из ротаций отдельных кубитов и операций «условное не». Эту универсальную функцию можно использовать для выполнения сколь угодно сложных квантовых вычислений. Но сначала давайте используем универсальный характер ротаций и операций «условное не», чтобы разобраться, как на самом деле действуют такие процессы, как измерение и декогерентность.

Кубит и декогерентность

Состояние |0> + |1> – это кубитовый аналог состояния частицы в эксперименте с двойной щелью, в котором она проходит через обе щели одновременно. Состояние частицы, проходящей через щели, также соответствует некоторому квантовому биту. Если |левая> соответствует состоянию, в котором частица проходит через левую щель а |правая> – прохождению через правую щель, то |левая> + |правая> будет состоянием, в котором частица проходит через обе щели сразу.

Кубит (например, ядерный спин) можно поместить в состояние |0> + |1> (соответствующее частице, проходящей через обе щели сразу), взяв спин «вверх» (|0>) и совершив его ротацию на одну четверть полного оборота, в состояние |0> + |1>. И можно убедиться, что кубит находится в желаемом состоянии, совершив ротацию спина назад на одну четверть оборота и измерив затем его состояние (например, с помощью аппарата Штерна-Герлаха). Вы увидите, что он вернулся в исходное состояние.

Теперь возьмем второй кубит, первоначально находящийся в состоянии |0>. Так же как первый кубит – аналог положения частицы, этот второй кубит – аналог датчика. Выполним операцию «условное не» с этим кубитом, используя бит частицы в качестве управляющего. Указанная операция инвертирует кубит в том и только том случае, если кубит частицы находится в состоянии |1>, что соответствует частице, проходящей через правую щель. В действительности, как мы уже договорились, кубит частицы находится в состоянии суперпозиции |0> + |1>. Не тревожьтесь: квантовая операция «условное не» действует как соответствующая классическая операция для каждого компонента этой суперпозиции. В той части суперпозиции, в которой кубит частицы находится в состоянии |0> (что соответствует частице, проходящей через левую щель), кубит датчика остается в состоянии |0>. В той же части суперпозиции, где кубит частицы находится в состоянии |1>, кубит датчика меняет свое состояние с |0> на |1>. Взятые вместе, два квантовых бита после операции «условное не» находятся теперь в состояниях |00> + |11>. В одном компоненте суперпозиции значения кубитов частицы и датчика будут оба равны |0>. В другом компоненте они оба будут иметь значения |1>.

Операция «условное не» обеспечила корреляцию двух квантовых битов. В ходе операции информация в первом кубите распространилась и «заразила» второй кубит; иначе говоря, операция «условное не» создала взаимную информацию между двумя кубитами. Второй кубит теперь обладает информацией о том, каково значение первого кубита |0> или |1>.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий