Knigionline.co » Наука, Образование » Программируя Вселенную. Квантовый компьютер и будущее науки

Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд

Программируя Вселенную. Квантовый компьютер и будущее науки
  • Название:
    Программируя Вселенную. Квантовый компьютер и будущее науки
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Анна Стативка
  • Издательство:
    Альпина Диджитал
  • Страниц:
    126
  • ISBN:
    978-5-91671-270-4, 978-5-91671-324-4
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Любой атом Вселенной, а не лишь только всевозможные макроскопические объекты, способен беречь информацию. Акты взаимодействия атомов возможно обрисовать как простые закономерные операции, в коих заменяют собственные смысла квантовые биты – простые единицы квантовой инфы. Феноменальный, но перспективный расклад Сета Ллойда разрешает элегантно решить вопрос о неизменном усложнении Вселенной: так как в том числе и случайная и довольно краткая программка в ходе собственного выполнения на компе имеет возможность предоставить в высшей степени заманчивые итоги. Галактика каждый день обрабатывает информацию – будучи квантовым компом большого объема, она все время вычисляет личное будущее. И в том числе и эти фундаментальные действия, как рождение жизни, половое размножение, возникновение интеллекта, возможно и надлежит рассматривать как поочередные революции в обработке инфы.
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»

Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги

К настоящему времени квантовое моделирование является одной из самых замечательных экспериментальных демонстраций силы квантовых вычислений, а также их практическим применением, наиболее существенным для понимания идеи вычислительной Вселенной. Квантовые системы обычно делают много вещей сразу, поэтому их трудно моделировать классическим образом. Смоделировать один ядерный спин, который может делать две вещи квантово-параллельным образом, уже не так плохо, но 10 спинов могут выполнять 1024 дела сразу, 20 спинов могут сделать 1 048 576 дел сразу и т. д.

Как правило, чтобы проследить динамику квантовой системы, классический компьютер должен назначить отдельный расчет для каждой части квантовой волновой функции, но количество дел, которые выполняет квантовая система, растет очень быстро с ее размером. Смоделировать динамику даже относительно небольшой квантовой системы, состоящей из 300 ядерных спинов, как уже говорилось, совершенно невозможно.

Но квантовый компьютер не испытывает никаких затруднений, выполняя множество таких расчетов посредством квантового параллелизма. В 1982 г. Нобелевский лауреат Ричард Фейнман предложил гипотетическое устройство, которое он назвал универсальным квантовым имитатором. Чтобы смоделировать 300 ядерных спинов, универсальному квантовому имитатору потребовалось бы всего 300 квантовых битов. Если мы можем запрограммировать взаимодействия между 300 кубитами так, чтобы они имитировали взаимодействия между 300 спинами, то динамика кубитов сможет моделировать динамику спинов.

Фейнман просто указал на возможность существования универсального квантового имитатора; он не дал никаких ключей к тому, как его можно создать. В 1996 г. я показал, что обычные квантовые компьютеры как раз и являются универсальными квантовыми имитаторами; то есть любой желаемый набор квантово-механических взаимодействий можно запрограммировать на квантовом компьютере, и тогда можно выполнить квантовое моделирование путем многократного выполнения квантовых логических операций с кубитами компьютера{11}. (Методы квантового моделирования независимо от меня и примерно в это же время разработали Кристоф Залка из Бернского университета и Стивен Визнер из Тель-Авивского университета.)

Кроме того, я смог показать, что квантовое моделирование будет эффективным в том смысле, что, во-первых, количество кубитов, необходимых для моделирования, будет равно числу битов в моделируемой системе, а во-вторых, число операций, которые должен выполнить квантовый компьютер в процессе моделирования, будет пропорционально тем отрезкам времени, за которые система должна быть промоделирована.

Фейнман высказал догадку, а я доказал, что квантовые компьютеры могут функционировать как универсальные квантовые имитаторы, и их динамика может быть аналогом любой желаемой физической динамики. Квантовое моделирование происходит простым и непосредственным образом. Во-первых, отобразим части квантовой системы, которая будет промоделирована, на наборы квантовых битов; каждая часть моделируемой системы получает как раз достаточное количество кубитов для того, чтобы «схватить» ее динамику. Во-вторых, отобразим взаимодействия между частями системы на квантовые логические операции с кубитами, соответствующими частям системы. Универсальная природа квантовых логических операций гарантирует, что такие отображения способны выразить любую желаемую динамику.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий