Knigionline.co » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

Консенсусная реальность сильно отличается от внутренней, и понимание связи между ними есть задача, соответствующая по сложности проникновению в природу сознания. Консенсусная реальность сильно отличается и от внешней реальности, и поэтому принципиально важно не путать их. На мой взгляд, история современной физики показывает, что в нескольких научных прорывах наибольшую сложность представляли не математические выкладки, а понимание того, как взаимосвязаны эти две реальности.

В 1905 году, когда Эйнштейн сформулировал специальную теорию относительности, многие из её ключевых уравнений уже были получены Хендриком Лоренцем и другими учёными. Однако чтобы увидеть связь математики с измерениями, потребовался гений Эйнштейна. Он понял, что длины и интервалы времени, появляющиеся в математическом описании внешней реальности, отличаются от тех, которые измеряются в консенсусной реальности, и что эти различия зависят от движения. Так, если самолёт пролетает над группой людей, то в их консенсусной реальности он будет короче, чем до взлёта, а его бортовой хронометр будет идти медленнее.[58]

Десять лет спустя, когда Эйнштейн выдвинул общую теорию относительности, Бернхард Риман и другие учёные уже разработали ключевые элементы соответствующего математического формализма. Однако увенчать работу главным результатом вновь оказалось столь трудно, что потребовалось эйнштейновское озарение — понимание того, что искривлённому пространству в математическом описании внешней реальности в консенсусной реальности соответствует гравитация. Чтобы оценить, насколько это было трудно, представьте, что Исааку Ньютону на смертном одре явился джинн и предложил исполнить последнее желание. Ньютон решился:

— Пожалуйста, скажи мне, какими будут уравнения гравитации через триста лет.

Джинн записывает полную систему уравнений общей теории относительности и, будучи добрым джинном, объясняет, как выразить их в математических обозначениях того времени. Будет ли очевидно Ньютону, как интерпретировать это обобщение его собственной теории?

Трудность связывания внешней реальности с консенсусной взяла новый рекорд высоты с открытием квантовой механики. Это выразилось в продолжающихся по сей день спорах между физиками о том, как интерпретировать эту теорию, хотя прошло уже почти 100 лет. Внешняя реальность описывается гильбертовым пространством (гл. 8), в котором волновая функция меняется со временем детерминистическим образом, тогда как в консенсусной реальности события кажутся случайными, с распределением вероятности, которое можно с высокой точностью вычислить по волновой функции. Прошло более 30 лет после рождения квантовой механики, прежде чем Эверетт показал, как эти две реальности могут быть согласованы, и ещё 10 лет мир ждал открытия декогеренции, ключевого явления для примирения существования макросуперпозиций во внешней реальности с их отсутствием в консенсусной.

Сейчас главным вызовом для теоретической физики является объединение квантовой механики с гравитацией. Основываясь на приведённой последовательности исторических примеров, я предсказываю, что корректная математическая теория квантовой гравитации побьёт все прежние рекорды по сложности её интерпретации. Допустим, накануне следующей конференции по квантовой гравитации наш джинн залетит в лекционный зал и запишет на доске уравнения окончательной теории. Сможет ли кто-либо из участников понять то, что будет стёрто следующим утром? Я сомневаюсь.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий