Knigionline.co » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

Так тянется ли космос бесконечно? К вопросу можно подойти двояко: путём наблюдений и теоретически. Пока мы следовали первому подходу, рассматривая, как хитроумные измерения открывали всё более далёкие области космоса без видимых признаков конца. Однако и теоретики достигли значительного прогресса. Прежде всего, как может пространство не тянуться бесконечно? Я объяснил детям, что было бы странно вдруг встретить знак, как на рис. 2.6, предупреждающий о достижении конца космоса. Я размышлял об этом, когда сам был ребёнком: а что за этим знаком? Мне казалось, что беспокоиться о достижении конца космоса столь же глупо, как древним мореплавателям бояться упасть с края Земли. Так что я попросту заключил, что пространство бесконечно и тянется вечно. Ещё Евклид пришёл к выводу, что геометрия является частью математики и что бесконечное трёхмерное пространство можно описать столь же строго, как и другие математические структуры вроде числовых множеств. Древнегреческий учёный разработал красивую математическую теорию бесконечного трёхмерного пространства, а также его геометрических свойств, и люди долго считали её единственным логически возможным способом существования нашего физического пространства.

Рис. 2.6. Трудно представить себе, что пространство может быть конечным. Если оно где-то заканчивается, то что находится дальше, за его краем?

Однако в середине XIX века математики Карл Фридрих Гаусс, Янош Бойяи и Николай Лобачевский независимо друг от друга открыли, что существуют и другие логические возможности для однородного трёхмерного пространства. Бойяи в восторге писал отцу: «Из ничего я создал странный новый мир». Новые пространства подчиняются новым правилам: так, они более не обязаны быть бесконечными, каковым представлялось пространство Евклиду, а углы треугольника не обязательно дают в сумме 180°. Представьте себе треугольники на двумерных поверхностях трёхмерных фигур. Сумма трёх их углов больше 180° на сфере (рис. 2.7, слева), 180° на цилиндре (в середине) и меньше 180° на гиперболоиде (справа). Более того, двумерная поверхность сферы конечна, хотя на ней нет ничего похожего на край.

Этот пример показывает, что правила евклидовой геометрии могут нарушаться на поверхности, если она не плоская. Однако идеи Гаусса и других математиков были ещё радикальнее: пространство может быть искривлённым само по себе, даже если оно не является поверхностью чего-либо! Предположим, вы — слепой муравей, желающий знать, по какой из фигур на рис. 2.7 вы ползаете. Вы чувствуете себя так, будто живёте в двумерном пространстве, поскольку не можете выйти в третье измерение (оторваться от поверхности), но это не препятствует вашей детективной работе: вы по-прежнему можете определить прямую линию (как кратчайший путь между двумя точками), а значит, и суммировать величины трёх углов треугольника. Например, если вы получите 270°, то воскликнете: «Это больше 180°, значит, я на сфере!» Чтобы ещё больше впечатлить друзей-муравьёв, вы даже можете рассчитать, как далеко нужно пройти по прямой, чтобы вернуться в исходную точку. Иными словами, все обычные для геометрии объекты — точки, прямые, углы, кривые и т. д. — можно строго определить, оставаясь в двумерном пространстве безо всяких ссылок на третье измерение. Это означает, что математики могут строго определить кривизну двумерной поверхности, даже если третьего измерения не существует: двумерное пространство может быть искривлённым само по себе, не являясь поверхностью чего-либо.

Рис. 2.7. Если нарисовать треугольники на этих поверхностях, сумма их углов окажется больше 180° (слева), 180° (посередине) и меньше 180° (справа). Эйнштейн считал, что в нашем трёхмерном физическом пространстве для треугольников возможны все эти варианты.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий