Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Атмосфера Марса, напротив, достаточно плотная, чтобы защитить от солнечных вспышек культуры, выращиваемые на поверхности. На Марсе, как мы видели, легко можно развернуть большие надувные теплицы, защитить их геодезическими куполами и тем самым быстро подготовить огромные площади для сельскохозяйственных нужд. Тамошний уровень освещенности, составляющий 43 % от такового на Земле, достаточен для фотосинтеза, который, кстати, можно ускорить, если заполнить купола газовой смесью с большей концентрацией двуокиси углерода, нежели на Земле.

Мы уже знаем, что для того, чтобы поддерживать в жилом помещении диаметром 50 метров давление до 5 фунтов на квадратный дюйм, понадобится упрочненная кевларовая ткань для купола толщиной в 1 миллиметр. Однако растениям требуется лишь 0,7 фунта на квадратный дюйм, или 50 мбар, атмосферного давления смеси из 20 мбар азота, 20 мбар кислорода, 6 мбар паров воды и менее 1 мбар диоксида углерода. Если 50-миллиметровый купол будет использоваться только в качестве теплицы, нам хватит ткани толщиной всего 0,2 миллиметра. Такой купол, занимающий около 2000 квадратных метров (половину акра) пахотных земель, потребует ткани массой порядка одной тонны, но щит из оргстекла для такого купола по-прежнему будет иметь массу 4 тонны.

Массу плексигласового щита, закрывающего геодезический купол, можно уменьшить почти вдвое, если верхнюю полусферу сделать в форме линзы вместо традиционной. Такой купол легче возводить, поскольку его высота меньше. Также значительно сократится время, за которое сельскохозяйственные культуры наполнят кислородом атмосферу купола.

Однако, если растения могут переносить давление 0,7 фунта на квадратный дюйм, люди на это не способны, так что внутри таких куполов придется носить скафандры. Повышение давления под куполом до 2,5 фунта на квадратный дюйм исключит потребность в скафандрах. Однако до тех пор, пока на базе будет мало обрабатываемой земли, вероятно, лучше делать парниковые купола пригодными для обслуживания при том же давлении в 5 фунтов на квадратный дюйм, что и в жилых куполах. Тогда можно будет построить туннели, позволяющие людям без скафандров свободно, без необходимости герметизации и разгерметизации, передвигаться между двумя типами куполов. Более того, благодаря общим элементам в конструкции их массовое производство окажется проще, а еще люди смогут переселиться в бывшие теплицы, когда планета станет перенаселенной. Основное различие между этими двумя типами куполов будет состоять в допустимом парциальном давлении двуокиси углерода. В жилых куполах это значение следует ограничить типичным земным – около 0,4 мбар. А в теплицах нужно использовать намного более высокий уровень углекислого газа, около 7 миллибар (атмосферное марсианское давление), поскольку это должно значительно повысить урожайность (растения на Земле страдают от недостатка двуокиси углерода). Как мы уже видели, существует множество способов подачи в теплицу воды. Таким образом, основные предпосылки для сельского хозяйства – хорошо освещенная и увлажненная почва – создать на Марсе вполне реально.

Таблица 7.1. Сравнение питательных веществ для растений в почвах на Земле и Марсе

Насколько плодороден марсианский грунт? Трудно сказать, но на основании того, что нам известно сегодня, он, вполне вероятно, может оказаться отличной средой для выращивания культур – значительно лучшей, чем почвы в большинстве стран на Земле.

В табл. 7.1 сравнивается концентрация необходимых для растений питательных веществ в земных и марсианских грунтах (последние данные основаны на результатах «Викинга» и анализе SNC-метеоритов [36]).

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий