Knigionline.co » Наука, Образование » Квантовые вычисления со времен Демокрита

Квантовые вычисления со времен Демокрита - Скотт Ааронсон (2013)

Квантовые вычисления со времен Демокрита
  • Год:
    2013
  • Название:
    Квантовые вычисления со времен Демокрита
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Наталья Лисова
  • Издательство:
    Альпина Диджитал
  • ISBN:
    9785961450309
  • Рейтинг:
    0 (0 голос)
  • Ваша оценка:
Написанная знакомым теоретиком в области квантовых вычислений Скоттом Ааронсоном, данная книжка проведет вас сквозь удивительное многообразие тем, изучая глубочайшие идеи арифметики, информатики и физики от доктрине множеств, вычислительной трудности, квантовых вычислений до интерпретации квантовой механики. Не считая такого, вы познакомитесь с обсуждениями сравнительно путешествий во времени, феномена Ньюкома, антропного принципа и взоров английского физика и математика Роджера Пенроуза.
Неформальный манера Ааронсона готовит данную ошеломительную книжку доступной для читателей с научной подготовкой, а еще для учащихся и изыскателей, работающих в области физики, информатики, арифметики и философии. Наконец, для кого же предопределена данная книга? Неуж-то для неспециалистов, которые в действительности не протекут далее 1 руководители, но которые попытаются впечатлить постояльцев, положив эту умственную книжку на журнальный столик? Я вижу только 1 другую вероятность: есть конкретная публика (как правило, ей уделяют не достаточно внимания) у научных книжек, которые невозможно отнести ни к «популярной», ни к «профессиональной» категории. Речь идет о книжках, которые обрисовывают участок умственного ландшафта.

Квантовые вычисления со времен Демокрита - Скотт Ааронсон читать онлайн бесплатно полную версию книги

Какой может быть мощность множества, или, иначе, его кардинальное число? Разумеется, существуют множества конечной мощности, по одному на каждое натуральное число. Затем идет первая бесконечная мощность, мощность множества целых чисел, которую Кантор назвал ℵ0 («алеф-нуль»). Множество рациональных чисел обладает той же мощностью ℵ0; иначе этот факт можно выразить, сказав, что рациональные числа являются счетными – в том смысле, что их можно поставить в попарное соответствие с целыми числами. Иными словами, мы можем составить бесконечный список таким образом, что рано или поздно в нем появится каждое рациональное число.

Как доказывается, что множество рациональных чисел счетно? Вы никогда не видели этого доказательства? Ну хорошо. Для начала запишем 0 и добавим все рациональные числа, у которых сумма абсолютных значений числителя и знаменателя равна 2. Затем добавляем к списку все рациональные числа, у которых сумма абсолютных значений числителя и знаменателя равно 3. И так далее. Ясно, что любое рациональное число рано или поздно появится в этом списке. Следовательно, их бесконечное количество счетно. Что и требовалось доказать.

Но самый серьезный вклад Кантора заключался в том, что он показал, что не каждая бесконечность является счетной, – так что, к примеру, бесконечность действительных чисел больше, чем бесконечность целых чисел. В более общем плане: точно так же, как существует бесконечно много чисел, существует и бесконечно много бесконечностей.

С доказательством этого вы тоже не встречались? Ну хорошо, хорошо. Пусть у вас имеется бесконечное множество A. Мы покажем, как получить другое бесконечное множество B, которое будет больше, чем A. Просто возьмем в качестве множества B множество всех подмножеств A, которое гарантированно существует, согласно аксиоме о степенном множестве. Откуда мы знаем, что B больше, чем A? Ну предположим, что мы смогли каждому элементу a ∈ A поставить во взаимно однозначное соответствие элемент f (a) ∈ B, так что лишних элементов B не осталось. Тогда мы можем определить новое подмножество S ⊆ A, состоящее из всех a, которые не входят в подмножество f (a). Такое S также является элементом B. Но, заметьте, S не может соответствовать никакому a ∈ A, поскольку в противном случае a содержалось бы в f (a) тогда и только тогда, когда оно не содержалось бы в f (a). Получили противоречие. Следовательно, B больше A, и мы получили бесконечность большую, чем та, с которой мы начали.

Это определенно одно из четырех или пяти величайших доказательств во всей математике – и опять же полезно посмотреть на него хотя бы раз в жизни.

Помимо кардинальных чисел полезно обсудить также ординальные, или порядковые, числа. Их, вместо того чтобы определять, проще проиллюстрировать. Начнем с натуральных чисел:

0, 1, 2, 3, …

Затем, говорим мы, определим нечто, что будет больше любого натурального числа:

ω.

Что идет после ω?

ω + 1, ω + 2, …

Далее, что идет после всего этого?

2ω.

Так, мы ухватили идею:

3ω, 4ω, …

Так, мы ухватили идею:

ω², ω³, …

Так, мы ухватили идею:

ωω, ωωω, …

В таком духе мы могли бы продолжать довольно долго! По существу, для любого множества ординальных чисел (конечного или бесконечного) мы уславливаемся, что существует некоторое первое ординальное число, которое стоит после всего, что содержится в этом множестве.

Множество ординальных чисел обладает тем важным свойством, что оно хорошо упорядочено. Это означает, что в каждом его подмножестве имеется некоторый минимальный элемент. Это отличает его от множества целых чисел или множества положительных действительных чисел, в которых у каждого элемента есть предшествующий элемент.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий