Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

Рис. 4. Эксперимент для измерения частичного отражения света от двух поверхностей стекла. Фотоны могут попасть в фотоумножитель А, отразившись либо от передней, либо от задней поверхности стеклянной пластинки; кроме того, они могут пройти сквозь обе поверхности и попасть в фотоумножитель В. В зависимости от толщины стекла от 0 до 16 фотонов из каждых 100 попадают в фотоумножитель А. Эти результаты представляют трудность для любой разумной теории, включая теорию «дырок и пятен» (см. рис. 3). Оказывается, частичное отражение может быть «погашено» или «усилено» наличием добавочной поверхности.

Чтобы проверить гипотезу, что количество света, отраженного двумя поверхностями, зависит от толщины стекла, проведем серию экспериментов. Начнем с тончайшей пластинки и измерим, сколько фотонов из каждых 100, испущенных источником, достигнут фотоумножителя в А. Затем заменим пластинку чуть более толстой и произведем новые измерения. Повторим эти действия несколько десятков раз. Что мы получим?

В случае самой тонкой пластинки мы получим, что число фотонов, приходящих в А, почти всегда равно нулю, а иногда равно 1. Заменив тончайшую пластинку чуть более толстой, получаем, что количество отраженного света стало больше – ближе к ожидаемым 8 %. Еще несколько замен – и количество фотонов, попадающих в А, начинает превышать 8 %. По мере постепенного утолщения пластинок количество света, отраженного двумя поверхностями, достигает максимума, 16 % (это происходит при толщине в 5 миллионных дюйма), а затем снова понижается до 8 % и далее до нуля. При какой-то определенной толщине пластинки отражения вообще нет. (Попробуйте-ка получить это с пятнами!)

Если дальше продолжать утолщать стекло, частичное отражение будет увеличиваться до 16 % и возвращаться к нулю – этот цикл повторяется снова и снова (рис. 5). Ньютон обнаружил эти колебания и поставил один эксперимент, который мог быть правильно проинтерпретирован, только если число таких колебаний достигало по меньшей мере 34 000 циклов! Сегодня, имея лазеры (которые дают очень чистый монохроматический свет), мы можем отчетливо наблюдать колебания после более чем 100 000 000 повторений. Это соответствует более чем 50-метровой толщине стекла. (В обычной жизни мы не наблюдаем этого явления, потому что источник, как правило, не является монохроматическим.)

Рис. 5. Результаты эксперимента по тщательному измерению зависимости степени частичного отражения света от толщины стекла демонстрируют явление, называемое «интерференцией». По мере увеличения толщины стекла степень частичного отражения света проходит повторяющийся цикл от 0 до 16 % без признаков затухания

Таким образом, получается, что предсказанные нами 8 % верны лишь в среднем (тогда как в действительности величина регулярно меняется от нуля до 16 %). Это среднее значение верно только дважды в цикле – так стоящие часы показывают правильное время два раза в сутки. Чем можно объяснить эту странную зависимость частичного отражения от толщины стекла? Как может передняя поверхность отражать 4 % света (что доказывается нашим первым экспериментом), если, поместив снизу на нужном расстоянии вторую поверхность, мы можем каким-то образом «выключить» отражение? А поместив эту вторую поверхность на несколько иной глубине, мы можем «усилить» отражение до 16 %! Может ли быть, что задняя поверхность оказывает какое-то влияние или действие на способность передней поверхности отражать свет? А что, если мы добавим третью поверхность?

При наличии третьей или любого другого числа следующих поверхностей количество отражаемого света опять меняется. Получается, что мы с нашей теорией перебираем поверхности одну за другой, не зная, достигли ли мы, наконец, последней. Нужно ли фотону делать то же самое, чтобы «решить», отражаться ли ему от передней поверхности?

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий