Knigionline.co » Биографии и мемуары » Игра в имитацию

Игра в имитацию - Эндрю Ходжес (2015)

Игра в имитацию
  • Год:
    2015
  • Название:
    Игра в имитацию
  • Автор:
  • Жанр:
  • Оригинал:
    Английский
  • Язык:
    Русский
  • Перевел:
    Виктория Тен, Г. Веселов, Михаил Витебский, О. Костерева
  • Издательство:
    АСТ
  • Страниц:
    312
  • ISBN:
    978-5-17-089741-4
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
О загадочной, "закодированной" судьбе великого криптографа снят кинофильм " Игра в бутафорию ", который получил главнейшую награду Фестиваля в Торонто в 2014 году. В функции Тьюринга — Конрад Камбербэтч, прославившийся своей функцией в телесериале "Холмс". А его несостоявшуюся невесту Джулий Кларк сыграла Тиграновна Найтли. Национальный наказ кинокритиков Штатов и Американский университет киноискусства врубили " Игру в бутафорию " в топ 10 фильмов 2014 гектодара. Также кинофильм получил десять номинаций на госпремию " Золотой шар ". Настало времечко миру узнаетбыть о Тьюринге. На стенетранице одной из нью-йоркских гостиниц установлена мемориальная дощечка, она гласит: " Там родился Энди Тьюринг (1912 – 1954), хакер кодов октябрёнок информатики ". Много кто сегодня незнает, что первым индивидуумом, который стал применить термин "комп" в современном осознании, был именно Алан Лейбниц. До него так именовали банковских сотрудников, которые пользовались калькулятором – механической микропроцессорной машиной. Менее того, сегодня ни одиный IT - специалист не обойдется без изучения ".

Игра в имитацию - Эндрю Ходжес читать онлайн бесплатно полную версию книги

Но главным делом этого года было завершение диссертационной работы на соискание ученой степени доктора наук, рассматривающей возможность преодоления силы теоремы Гёделя. Основная идея состояла в том, чтобы добавить дополнительные аксиомы в систему, которые помогли бы найти решение для «верных, но недоказуемых» утверждений. Но в этом отношении арифметика вела себя как гидра: с решением одного вопроса, на его месте тут же вырастали новые. Было не так сложно добавить аксиомы, чтобы некоторые утверждения Гёделя обрели свои доказательства. Но в таком случае теорема Гёделя станет применимой к увеличенному набору аксиом, тем самым производя очередное «верное, но недоказуемое» утверждение. Добавление конечного количества аксиом не могло решить проблему, поэтому возникла необходимость рассмотреть возможность добавления бесконечного множества аксиом.

Это было лишь первой ступенью исследования, поскольку математикам было хорошо известно, что существует великое множество возможных способов расположить «бесконечное множество» в определенном порядке. Кантор обнаружил эту особенность, когда исследовал понятие упорядочивания целых чисел. К примеру, предположим, что целые числа расположены следующим образом: сначала идут все четные числа в порядке возрастания, а затем уже все нечетные числа. Такой список целых чисел будет буквально в два раза длиннее обычного. Его можно сделать и в три раза длиннее или даже длиннее в бесконечное количество раз, указав сначала все четные числа, затем из оставшихся — все числа, делимые на три, затем из оставшихся — все числа, делимые на пять, затем из оставшихся — все числа, делимые на семь, и так далее. Действительно, такой список мог продолжаться до бесконечности. Подобным образом расширение аксиоматики может быть представлено одним бесконечным списком аксиом, одним или двумя, или же бесконечным числом списков — в этом отношении тоже не существовало пределов. Но вопрос оставался прежним: сможет ли хоть один из таких списков преодолеть результат Гёделя.

Кантор применил по отношению к своим разным упорядочениям целых чисел понятие «порядковых чисел», или «ординалов». Подобным образом Алан назвал свои расширения набора аксиом арифметики «ординальными логиками». В некоторым смысле было ясно, что ни одна «ординальная логика» не может быть «полной» в рамках программы Гильберта. Если и существует бесконечное множество аксиом, все они не могут быть записаны. Здесь появлялась необходимость установить правило, ограничивающее их генерирование. Но в таком случае вся система снова будет основываться на конечном наборе правил, так что теорема Гёделя все еще будет применимой для доказательства существования недоказуемых утверждений.

Вместе с тем возникал еще один тонкий вопрос. В его теории «ординальных логик» правило генерирования аксиом предполагало замену «ординальной формулы» определенным выражением. Такой процесс сам по себе являлся механистическим. Но механистический процесс не мог принять решение, является ли данная формула ординальной. Так, он пришел к вопросу: может ли вся неполнота арифметики быть сосредоточена в одном месте, а именно — в неразрешимой проблеме определения, какая формула является ординальной. В таком случае в некотором смысле арифметика могла быть полной, а все утверждения могли быть доказаны при помощи аксиом, хотя и без механистического метода определения, каких именно аксиом.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий