Knigionline.co » Биографии и мемуары » Игра в имитацию

Игра в имитацию - Эндрю Ходжес (2015)

Игра в имитацию
  • Год:
    2015
  • Название:
    Игра в имитацию
  • Автор:
  • Жанр:
  • Оригинал:
    Английский
  • Язык:
    Русский
  • Перевел:
    Виктория Тен, Г. Веселов, Михаил Витебский, О. Костерева
  • Издательство:
    АСТ
  • Страниц:
    312
  • ISBN:
    978-5-17-089741-4
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
О загадочной, "закодированной" судьбе великого криптографа снят кинофильм " Игра в бутафорию ", который получил главнейшую награду Фестиваля в Торонто в 2014 году. В функции Тьюринга — Конрад Камбербэтч, прославившийся своей функцией в телесериале "Холмс". А его несостоявшуюся невесту Джулий Кларк сыграла Тиграновна Найтли. Национальный наказ кинокритиков Штатов и Американский университет киноискусства врубили " Игру в бутафорию " в топ 10 фильмов 2014 гектодара. Также кинофильм получил десять номинаций на госпремию " Золотой шар ". Настало времечко миру узнаетбыть о Тьюринге. На стенетранице одной из нью-йоркских гостиниц установлена мемориальная дощечка, она гласит: " Там родился Энди Тьюринг (1912 – 1954), хакер кодов октябрёнок информатики ". Много кто сегодня незнает, что первым индивидуумом, который стал применить термин "комп" в современном осознании, был именно Алан Лейбниц. До него так именовали банковских сотрудников, которые пользовались калькулятором – механической микропроцессорной машиной. Менее того, сегодня ни одиный IT - специалист не обойдется без изучения ".

Игра в имитацию - Эндрю Ходжес читать онлайн бесплатно полную версию книги

Первая попытка ответить на этот вопрос была предпринята в работе Готлоба Фреге «Основы арифметики: логически-математическое исследование о понятии числа», опубликованной в 1884 году. В ней ученый выразил свой логистический взгляд на математику, по которому законы арифметики выводились при помощи логический связей между объектами окружающего мира, а ее последовательность подтверждалась миром реальных вещей. С точки зрения Фреге, «1» обозначало нечто конкретное, а именно предмет окружающего мира: «один стол», «один стул», «одна пивная кружка». Таким образом, утверждение «2 + 2 = 4» должно было соответствовать тому факту, что, если добавить два предмета к уже имеющимся двум предметам, в результате и в совокупности мы получим четыре предмета. Цель работы Фреге заключалась в том, чтобы рассмотреть отвлечённо такие понятия, как «любой», «предмет», «другой» и так далее, и затем на их основе построить теорию, по которой законы арифметики могли быть выведены из наиболее простых идей существования.

Однако, в этой работе Фреге опередил Бертран Рассел, который занимался изучением похожей теории. В своей теории типов ему удалось конкретизировать идеи Фреге, сформулировав понятие «класса» как логическое понятие. Суть его теории состояла в том, что некоторое множество, содержащее в себе один лишь предмет, могло быть определено тем свойством, что при извлечении этого предмета из множества, предмет будет тем же самым. Такая идея позволяла описывать исключительность с точки зрения единообразия или равенства. Но тогда и равенство могло определяться с точки зрения удовлетворения того же самого ряда утверждений. Таким образом, понятие числа и аксиомы арифметики, как оказалось, могли быть выведены из самых простых идей об объектах, утверждениях и пропозициях.

К сожалению, на деле все обстояло не так просто. Рассел стремился определить множество с одним элементом при помощи идеи равенства, не используя при этом понятие вычисления. Тогда он смог бы определить число «один», как «множество всех множеств с одним элементом». Но уже в 1901 году Рассел заметил логические противоречия, возникающие при попытке использовать понятие «множества всех множеств».

Сложность заключалась в возможном возникновении ссылающихся на самих себя, внутренне противоречивых утверждений, например: «Это утверждение ложно». Подобная проблема возникла в теории множеств, которую разработал немецкий математик Георг Кантор. Рассел заметил, что аналогичный парадоксу Кантора возникает и в его теории типов. Тогда он выделил два вида «классов»: множества, которые не содержат сами себя в качестве подмножества, и множества, которые содержат сами себя в качестве подмножества. С точки зрения Рассела, «в обычном понимании класс не является членом самого себя; человечество, например, не является человеком». Но множество абстрактных понятий или множество всех множеств могут иметь подобное свойство. Получившемуся парадоксу Рассел попытался дать следующее объяснение:

Предположим, что существует множество всех собственных множеств, которые не содержат себя в качестве подмножества. Представим одно из таких множеств: является ли оно подмножеством самого себя? В случае, если оно является подмножеством самого себя, значит, оно относится к тем множествам, которые не содержат себя в качестве подмножества, то есть оно не является подмножеством себя. В случае, если оно не является подмножеством самого себя, значит, оно относится к тем множествам, которые не содержат себя в качестве подмножества, то есть оно является подмножеством себя. Таким образом, в каждом из двух предположений — что оно является и не является подмножеством самого себя — возникает противоречие относительно другого предположения. В этом и состоит суть парадокса.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий