Knigionline.co » Биографии и мемуары » Игра в имитацию

Игра в имитацию - Эндрю Ходжес (2015)

Игра в имитацию
  • Год:
    2015
  • Название:
    Игра в имитацию
  • Автор:
  • Жанр:
  • Оригинал:
    Английский
  • Язык:
    Русский
  • Перевел:
    Виктория Тен, Г. Веселов, Михаил Витебский, О. Костерева
  • Издательство:
    АСТ
  • Страниц:
    312
  • ISBN:
    978-5-17-089741-4
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
О загадочной, "закодированной" судьбе великого криптографа снят кинофильм " Игра в бутафорию ", который получил главнейшую награду Фестиваля в Торонто в 2014 году. В функции Тьюринга — Конрад Камбербэтч, прославившийся своей функцией в телесериале "Холмс". А его несостоявшуюся невесту Джулий Кларк сыграла Тиграновна Найтли. Национальный наказ кинокритиков Штатов и Американский университет киноискусства врубили " Игру в бутафорию " в топ 10 фильмов 2014 гектодара. Также кинофильм получил десять номинаций на госпремию " Золотой шар ". Настало времечко миру узнаетбыть о Тьюринге. На стенетранице одной из нью-йоркских гостиниц установлена мемориальная дощечка, она гласит: " Там родился Энди Тьюринг (1912 – 1954), хакер кодов октябрёнок информатики ". Много кто сегодня незнает, что первым индивидуумом, который стал применить термин "комп" в современном осознании, был именно Алан Лейбниц. До него так именовали банковских сотрудников, которые пользовались калькулятором – механической микропроцессорной машиной. Менее того, сегодня ни одиный IT - специалист не обойдется без изучения ".

Игра в имитацию - Эндрю Ходжес читать онлайн бесплатно полную версию книги

К счастью, вещественные числа можно было описывать существенно различными способами. Уже к началу девятнадцатого века было хорошо известно, что «вещественные числа» можно представить в виде бесконечной десятичной дроби, например, число π можно записать в виде 3.14159265358979.… Более точное представление получила идея, что «вещественное число» может быть представлено настолько точно, насколько требуется, в виде десятичного числа — бесконечной последовательности целых чисел. И только в 1872 году немецкий математик Дедекинд смог изобрести конструктивный подход к определению «вещественного числа», при котором их строят, исходя из рациональных, которые считают заданными. Таким образом, исследование Дедекинда объединило понятия числа и длины, а также перенаправило вопросы Гильберта из области геометрии в область целых чисел или «арифметики», в ее строгом математическом смысле. Как выразился сам Гильберт, вся его работа заключалась в том, чтобы «свести все исследования к оставленной без ответа проблеме: противоречивы ли аксиомы арифметики».

На этом этапе разные ученые-математики стали применять различные подходы. Среди них существовала точка зрения, что изучение аксиом арифметики является само по себе абсурдным занятием, ведь в математике нет ничего более примитивного, чем целые числа. С другой стороны, можно было, конечно, поставить вопрос, существует ли некоторое выражение сути фундаментальных свойств целых чисел, из которой могут быть выведены остальные. В своих исследованиях Дедекинд рассматривал и этот вопрос и в 1888 году доказал, что вся арифметика берет свое начало из трех основных идей: 1 есть число; если n есть число, то и n+1 тоже есть число; принцип индукции позволяет сформулировать подобные утверждения для всех чисел. При желании эти идеи могут быть представлены, как абстрактные аксиомы в духе «столов, стульев и пивных кружек», на которых может быть построена вся теория чисел, не ставя вопрос, какое значение несут символы «1» или «+». Год спустя, в 1889 году, итальянский математик Джузеппе Пеано представил эти аксиомы в более привычной для современной математики форме.

В 1900 году Гильберт приветствовал новый век, поставив перед миром математических наук семнадцать нерешенных проблем. Вторая из них заключалась в доказательстве последовательности «аксиом Пеано», от которого, как он показал, зависела строгость математических дисциплин. Ключевым словом было «последовательность». Так, в арифметике ранее были известны теоремы, доказательство которых требовало выполнения тысячи математических операций, к примеру, теорема Гаусса, которая объясняет, что каждое целое число может быть представлено в виде суммы четырёх квадратов. Тогда как можно быть уверенным наверняка, что не существует подобной длинной последовательности выводов, которая бы привела к противоположному результату? В чем же найти то основание для веры в подобные математические суждения о всех числах, если они не поддаются проверке? И как абстрактные правила игры Пеано, по которым символы «1» и «+» не несут в себе исходного смысла, могут гарантировать свободу математики от противоречий? Эйнштейн сомневался относительно законов движения. Гильберт сомневался даже в утверждении, что дважды два равняется четырём — или по крайней мере сказал, что на то должна быть причина.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий