Knigionline.co » Наука, Образование » Онтогенез. От клетки до человека

Онтогенез. От клетки до человека - Джейми Дейвис (2017)

Онтогенез. От клетки до человека
  • Год:
    2017
  • Название:
    Онтогенез. От клетки до человека
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Наталья Ленцман, Т. Матешина
  • Издательство:
    Питер
  • Страниц:
    166
  • ISBN:
    978-5-496-01696-4
  • Рейтинг:
    3.2 (19 голос)
  • Ваша оценка:
Как мы стали такими, какие мы есть? По Какой Причине у нас две руки и ноги, однако только лишь одна голова? По Какой Причине людское туловище симметрично, однако в то же время его половинки не целиком схожи? По Какой Причине отпечатки пальцев однояйцевых близнецов не одинаковые? Как формировался наш разум и что такое сознание? По Какой Причине мы смертны и какой в данном биологический смысл?
Аналогичные проблемы общество выделяло для себя еще в древности. В Том Числе И в настоящее время некоторые вопросы до сих пор не имеют ответа, вследствие каким с одной оплодотворенной яйцеклетки создается такого рода трудно упорядоченный тело, складывающийся с большого колличества моляльных строений, какие взаимодействуют товарищ со ином, обладают собственный личный оборот существования, готовы ко восстановления также саморазвитию.
Джейми Дейвис сделал большую работу по адаптации труднейшего академического использованного материала для уровня, ясного массовому читателю.

Онтогенез. От клетки до человека - Джейми Дейвис читать онлайн бесплатно полную версию книги

Необходимая пространственная информация хранится на молекулярном уровне в самой ДНК в виде четырех генных кластеров. Типов так называемых HOX-генов всего тринадцать. Их так и принято нумеровать: от 1 до 13. В каждом из четырех кластеров – HOXA, HOXB, HOXC и HOXD – HOX-гены, расположены в порядке нумерации (рис. 28). Таким образом, ген типа 1 в кластере HOXA называется HOXA1, ген типа 1 в кластере HOXB – HOXB1. Следовательно, в кластере HOXA гены располагаются в порядке HOXA1, A2, A3 и т. д. Ни в одном кластере нет версии каждого гена от 1 до 13. Таким образом, если положение генов изобразить на диаграмме, поместив гены одного типа в одну колонку, в каждом HOX-кластере будут пробелы (рис. 28). Есть весомые свидетельства того, что у наших далеких предков был только один HOX-кластер (именно этот кластер по-прежнему есть у насекомых, например у мучного хрущака), но в процессе эволюции позвоночных HOX-кластер был скопирован дважды. Так образовались первые два кластера (как у бесчелюстные позвоночных), а затем и еще два (как у челюстноротых позвоночных).[93] Это объясняет, почему HOXA1 так похож на HOXB1, а HOXA2 так напоминает HOXB2 и т. д. С тех пор каждый кластер утратил некоторые гены. Предположительно это случилось потому, что вскоре после дублирования гены были настолько похожи, что любой из них мог заменять другой. Потеря предками гипотетического H OX D 6, например, не имела значения, если H OX A 6, H OX B 6 и HOXC6 могли выполнять все его функции. Со временем однотипные гены разных кластеров мутировали и приобретали значительные функциональные отличия, а значит, дальнейшие потери стали невозможны. Верить или не верить таким историям об эволюции – решать вам. Факт в том, что человеческие HOX-кластеры теперь имеют такой вид (рис. 28).

Поразительно, что в течение каких-то 460 млн лет челюстноротые позвоночные плавали, ходили или летали, а порядок HOX-генов внутри кластера ни разу не менялся! При этом большинство других генов уже пережили огромное количество перемен и многократно меняли взаимное расположение. На сегодняшний день последовательность генов у разных типов животных отличается. Причины такого постоянства расположения HOX-генов в кластере напрямую связаны с порядком специализации сегментов вдоль оси тела.

Рис. 28. Генетическая структура четырех человеческих HOX-кластеров. Каждая горизонтальная линия обозначает непрерывную область хромосомы. Каждая ячейка с номером – ген HOX (например, ячейка 1 кластера HOXA – HOXA1 и т. д.)

Генные HOX-кластеры начинают проявлять активность в структурировании организма уже во время гаструляции. На каждом участке оси от шейного отдела к поясничному эта активность проявляется незадолго до образования сомитов. В то время как клетки в ходе гаструляции продвигаются через узелок, активируются гены с левого конца HOX-кластеров («левый» на рис. 28). Процесс начинается с будущего шейного к поясничному отделу. Позже, когда клетки, направленные на формирование задней части тела, вовлекаются в гаструляцию, активируются и гены, расположенные правее в HOX-кластерах. Еще через некоторое время, когда гаструляция продвинется дальше по оси «голова – хвост», активизируются гены, изображенные на рис. 28 правее. В каждом случае клетки «запоминают» набор HOX-генов, которые они «подключили», как только появились из узелка. Они в течение долгого промежутка времени поддерживают активность этих генов. Возможно, не стоило так упрощать, но в данном случае это даже полезно.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий