Knigionline.co » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

Если физика предусматривает некую ужасную уязвимость, делающую большинство планет короткоживущими, то следует считать, что мы живём на одной из первых образовавшихся обитаемых планет. Так что эта депрессивная теория исключается. К несчастью для инфляции, Алан Гут понял, что при некоторых вполне разумных условиях она предсказывает именно такой результат. Беспокоясь за своё детище, предсказывающее гораздо более молодую Землю, он назвал это парадоксом молодости. Примерно в 2004 году, когда я стал его коллегой в МТИ, я потратил много времени на размышления о том, как делать предсказания в мультиверсе. Я написал на эту тему статью, которая объёмом далеко превзошла все мои рекорды, и был удивлён, обнаружив, что парадокс молодости оказался ещё более жёстким, чем я думал.

Обычно инфляция длится вечно (гл. 5), удваивая объём пространства примерно каждые 10–38 секунды и порождая беспорядочное пространство-время с бесчисленными Большими взрывами, происходящими в разные моменты времени, и бессчётным числом образующихся в разное время планет. Мы видели, что наблюдатель на любой планете будет рассматривать свой Большой взрыв в качестве момента окончания инфляции в своей части космоса. Лично для меня задержка между Большим взрывом и текущим наблюдательным мгновением составляет около 14 млрд лет. Теперь рассмотрим все одновременные наблюдательные мгновения: для некоторых время, прошедшее с момента их Большого взрыва, составляет 13 млрд лет, для других — 15 млрд, и т. д. Из-за безумного удвоения объёмов спустя секунду число Больших взрывов возрастёт в 21038 раз, поскольку объём за это время увеличится в 1038 раз. По той же причине в галактиках рождается в 21038 раз больше наблюдателей. Это означает, что если я — случайный наблюдатель среди всех существующих в данный момент, то мой шанс оказаться во Вселенной на секунду моложе, в которой Большой взрыв произошёл секундой позднее, в 21038 раз выше! Это единица со ста триллионами триллионов триллионов нулей. Моя планета должна быть моложе, моё тело должно быть моложе, и всё вокруг должно казаться образовавшимся в страшной спешке.

Часть пространства, испытавшая свой Большой взрыв в более близкое время, будет горячее, поскольку у неё было меньше времени. Обнаружить себя в относительно холодной Вселенной крайне маловероятно, и возникает проблема холодности. Когда я рассчитал вероятность того, что измеренная температура космического микроволнового фона окажется ниже 3° над абсолютным нулём, у меня получилось 10–1056, так что результат измерения этой температуры спутником COBE, составляющий 2,725 кельвина, исключает нашу основанную на теории инфляции историю с надёжностью 99,999…999 %, где после десятичной запятой следует сто миллионов триллионов триллионов триллионов триллионов девяток. Это нехорошо. В зале позора, где выставлены расхождения между теорией и экспериментом, этот результат побивает даже проблему устойчивости атома водорода из гл. 7 (28 девяток) и проблему тёмной энергии из гл. 4 (123 девятки). Итак, встречайте проблему меры!

Проблема меры: кризис в физике

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий