Knigionline.co » Наука, Образование » Магия математики: Как найти x и зачем это нужно

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин (2015)

Магия математики Как найти x и зачем это нужно
  • Год:
    2015
  • Название:
    Магия математики: Как найти x и зачем это нужно
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Д. Глебов
  • Издательство:
    Альпина Диджитал
  • Страниц:
    13
  • ISBN:
    9785961444667
  • Рейтинг:
    3 (1 голос)
  • Ваша оценка:
Почему можно было раньше узнавать о количествах, алгебре и математики в такой увлекательной конфигурации? Почему можно было сразу растолковать, зачем нам все эти синусоиды, интегралы и случайности. Оказывается, математика обступает нас. Она повсюду! По параболе струится струя водички из фонтана, а механики используют явления параболы, чтобы рассчитать траекториь полета вертолётов и спутников. С подмогой интегралов нельзя вычислить, сколько вам нужно паркета, чтобы застелить помещенье непрямоугольной формы. А уменье вычислять случайность события подсобит выиграть в преферанс. " Магия алгебры " – та книга, о которой вы грезили в школе. Все, от чего рано-ранее голова шагала кругом, теперь-то оказывается простеньким и ясным: четырёхугольник Паскаля, физико-математическая бесконечность, колдовские свойства количеств, последовательность Комбинаторики, золотое сечение. А всего профессиональный иллюзионист Артур Генри делится секретиками математических трюков. Продемонстрируйте их – ваши слушатели точно двинутся за калькуляторами, чтобы упомнить.

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин читать онлайн бесплатно полную версию книги

Давайте начнем с очень простого вопроса, на который существует очень простой ответ, которому по какой-то неизвестной причине не учат в школах:

а) если вам нужно перемножить два трехзначных числа, сможете ли вы сразу сказать, из скольки знаков будет состоять результат?

И чуть посложнее:

б) число из скольки знаков получится, если умножить четырехзначное число на пятизначное?

В школе почти все время уходит на то, чтобы подбирать цифры при умножении и делении, а не на то, чтобы подумать о том, насколько большим будет результат. Да-да, умение примерно оценивать, насколько большим будет ответ, куда важнее умения находить его последние или даже первые цифры. (Подумайте сами, какой практический прок от знания того, что итог начинается с цифры 3, и не полезнее ли знать, к чему он будет ближе: к 30 или 300 000 или вовсе к 3 000 000?)

Ответ на вопрос (а) – из пяти или шести цифр. Знаете почему? Минимальный возможный пример – 100 × 100 = 10 000 (здесь пять цифр). Максимальный – 999 × 999, результат которого однозначно будет меньше семизначного 1000 × 1000 = 1 000 000 (пусть и ненамного). Но раз 999 × 999 меньше, значит, в ответе будет шесть цифр (давайте, кстати, вспомним, насколько легко это посчитать: 9992 = (1000 × 998) + 12 = 998 001.) Вот и вывод: результатом перемножения двух трехзначных чисел будет пяти- или шестизначное число.

Ответ на вопрос (б) – из восьми или девяти цифр. Почему? Наименьшее четырехзначное число – 1000, которое можно представить в виде 10³ (единица с тремя нолями). Наименьшее пятизначное число – 10 000, равное 104. Следовательно, наименьшим произведением 10³ и 104 будет 107 – единица с семью нолями, восьмизначное число. (Откуда взялось 107? Смотрите: 10³ × 104 = (10 × 10 × 10) × (10 × 10 × 10 × 10) = 107.) Ну а наименьшим произведением будет число, лишь ненамного меньшее десятизначного 104 × 105 = 109, то есть девятизначное.

Такая логика приводит нас к простому правилу: умножениеm-значного числа наn-значное даст число, в которомm+nилиm+n – 1 знаков.

Конкретное количество цифр в ответе легче всего определить, взглянув на начальные (крайние левые) цифры перемножаемых чисел. Если их произведение больше или равно 10, тогда в ответе будет m + n цифр (например, в 271 × 828 произведение крайних левых цифр – 2 × 8 = 16 – больше десятки, поэтому ответом будет шестизначное число). Если произведение крайних левых цифр меньше или равно 4, тогда в ответе будет m + n – 1 цифр (например, 314 × 159 будет иметь пятизначный ответ). Ну а на случаи, в которых произведение крайних левых цифр будет равняться 5, 6, 7, 8 или 9, нам придется посмотреть чуть более внимательно. Например, произведение 222 и 444 – пятизначное, а вот 234 и 456 – шестизначное. Но куда важнее то, что оба ответа очень близки к 100 000.

В результате у нас получается еще более простое правило, уже в отношении деления: делениеm-значного числа наn-значное даст число, в которомm – nилиm – n+ 1 знаков.

То есть девятизначное число, разделенное на пятизначное, даст нам четырех- или пятизначный результат. Правило определения более конкретного ответа здесь еще проще, чем в случае с умножением. Крайние левые цифры не нужно ни умножать, ни делить – достаточно их просто сравнить. Если крайняя левая цифра делимого меньше крайней левой цифры делителя, в частном будет меньшее количество цифр (m – n). Если же крайняя левая цифра делимого больше крайней левой цифры делителя, в частном будет больше (m – n + 1) цифр. Если же цифры обоих чисел одинаковые, смотрим на следующие после них цифры и применяем то же правило. Например, в результате деления 314 159 265 на 12 358 мы получим пятизначное число, а на 62 831 – четырехзначное. Деление 161 803 398 на 14 142 даст пятизначный ответ, потому что 16 больше 14.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий