Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Если магнитосфера Земли блокирует солнечный ветер, она должна создавать противодействие. Почему бы на космическом корабле не создать искусственную магнитосферу, чтобы использовать тот же эффект для работы двигателей? Эта идея посетила инженера «Боинг» Дана Эндрюса и меня в 1988 году. Она оказалась своевременной. В 1987 году были открыты высокотемпературные сверхпроводники. Они необходимы, чтобы магнитный двигатель действительно смог работать, так как низкотемпературные сверхпроводники требуют слишком много тяжелого охлаждающего оборудования, а обычные проводники – слишком много энергии. Величина силы на квадратный километр солнечного ветра значительно меньше силы, создаваемой солнечным светом, но площадь, противодействующая магнитному полю, может быть намного больше, чем у любого созданного на практике жесткого солнечного паруса. Работая в сотрудничестве, Дан и я вывели уравнения и запустили компьютерное моделирование солнечного ветра, который воздействует на космический аппарат, генерирующий большое магнитное поле. Наши результаты таковы: если можно изготовить практичный высокотемпературный сверхпроводящий кабель, который будет проводить электрический ток той же плотности, что современные низкотемпературные сверхпроводники, такие как сплав ниобия и титана (NbTi), – около 1 миллиона ампер на квадратный сантиметр, – то можно будет создать магнитные паруса, которые будут иметь отношение тяги к весу в сто раз лучше, чем у солнечного паруса 10-микронной толщины [45]. Более того, в отличие от ультратонкого солнечного паруса, магнитный парус будет нетрудно развернуть. Он будет сделан не из тонкой пластиковой пленки, а из прочного кабеля, который за счет магнитных сил сможет автоматически «надувать» себя до формы жесткого обруча, как только начнется подача электрического тока. Потребуется энергия, чтобы заставить ток течь через кабель, но, поскольку сверхпроводящий провод не имеет электрического сопротивления, как только ток потечет по кабелю, дальнейшие затраты энергии на его поддержание не потребуются. В дополнение магнитный парус полностью ограждал бы корабль от солнечных вспышек.

Магнитный парус может создать достаточное усилие в направлении от Солнца, чтобы полностью или частично (за счет выключения электрического тока) противодействовать его гравитационному притяжению. Не вдаваясь в подробности, скажу, что эта возможность позволит аппарату, вращающемуся вокруг Солнца вместе с Землей, переходить на орбиты по направлению к любой планете Солнечной системы, просто увеличивая или уменьшая энергию магнитного паруса. И все это можно сделать, не потратив ни капли топлива.

Магнитные паруса в настоящее время не используются на практике, так как высокотемпературных сверхпроводящих кабелей для них не существует. Однако исследования в этой области ведутся очень активно. Я думаю, очень велики шансы того, что через десять или двадцать лет тип кабеля, необходимый для отличного магнитного паруса, будет широко доступен.

Синтез

Реакторы термоядерного синтеза работают с использованием магнитных полей, которые в вакуумной камере ограничивают плазму, состоящую из отдельных видов сверхгорячих заряженных частиц, способных сталкиваться и реагировать. Поскольку частицы высоких энергий имеют способность постепенно выбираться из магнитной ловушки, камера реактора должна быть определенного минимального размера, позволяющего предотвращать побег частиц достаточно долго, чтобы хватило времени на протекание реакции. Это требование минимального размера делает производство термоядерной энергии для проектов с низким энергопотреблением не самым привлекательным занятием, но в мире будущего, где энергетические потребности человечества вырастут в десятки или сотни раз, энергия термоядерного синтеза, несомненно, будет самой дешевой альтернативой ее традиционным источникам.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий