Knigionline.co » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

В шахматах используются абстрактные сущности (фигуры и поля на доске) и отношения между ними. Одно из отношений, которое фигура может иметь с полем, заключается в том, что первая стоит на втором. Другое отношение, которое фигура может иметь к полю, состоит в том, что ей позволено на него переместиться. Две центральные иллюстрации на рис. 10.6, согласно нашему определению, эквивалентны: между трёхмерными и двумерными фигурами и досками существует соответствие, так что любой трёхмерной фигуре, стоящей на определённом поле, соответствует двумерная фигура на соответствующем поле. Аналогично, описание шахматной позиции, выраженное лишь в словах английского языка, эквивалентно описанию, выраженному лишь в словах испанского языка, если имеется словарь, описывающий соответствие между английскими и испанскими словами, и если его применение при переводе описания на испанском даёт описание на английском.

Когда газеты или веб-сайты публикуют шахматные партии, они обычно используют ещё одну эквивалентную форму описания — так называемую алгебраическую шахматную нотацию (рис. 10.6, справа). Здесь фигуры обозначены не предметами или словами, а буквами (слон, например, эквивалентен «С»), а поля представляются буквой, задающей вертикаль, и цифрой, указывающей горизонталь. Поскольку абстрактное описание партии на рис. 10.6 (справа) эквивалентно её описанию в форме видеозаписи игры на физической доске, всё, что есть в последней форме описания, но не имеет соответствия в первой, является «багажом» — от физического существования доски до формы, цвета и названий фигур. Даже особенности алгебраической шахматной нотации выступают «багажом»: когда в шахматы играют компьютеры, они обычно пользуются иными абстрактными описаниями позиций, представляющими собой схемы из нулей и единиц в памяти. Так что остаётся после того, как мы избавляемся от «багажа»? Что именно описывается эквивалентными описаниями? Бессмертная партия, на 100 % очищенная.

«Багаж» и математические структуры

Разобранный случай с абстрактными шахматными фигурами, полями на доске и отношениями между ними — это пример гораздо более общего понятия — математической структуры. Это стандартное понятие в современной математической логике. В гл. 12 я приведу более строгое описание, а пока вполне достаточно неформального определения:

Рис. 10.7. Три эквивалентных описания одной и той же математической структуры, которую математики назвали бы ориентированным графом с четырьмя элементами. Каждое описание содержит некий произвольный «багаж», но структура, которую все они описывают, на 100 % свободна от «багажа»: её четыре сущности не имеют свойств, кроме отношений между ними, а эти отношения не имеют свойств, кроме информации о том, какие элементы они связывают.

Математическая структура — это набор абстрактных сущностей с отношениями между ними.

Рассмотрим несколько примеров. На рис. 10.7 (слева) описываются математические структуры с четырьмя сущностями, связанными между собой отношением нравится. Сущность Филипп представлена изображением с множеством внутренних свойств, таких, например, как цвет волос. Напротив, сущности математических структур совершенно абстрактны, что предполагает отсутствие у них каких бы то ни было внутренних свойств. Это значит, что какие бы символы мы ни использовали для их представления, это будут лишь метки, свойства которых не имеют отношения к делу: во избежание ошибочного приписывания свойств этих символов абстрактным сущностям, обозначением которых они являются, рассмотрим более аскетичное описание, представленное на среднем рисунке. Оно эквивалентно первому, поскольку, если установить соответствие согласно следующему словарю: Филипп = 1, Александр = 2, лыжи = 3, скейтборд = 4, нравится = R, все отношения сохранятся. Так, «Александру нравится скейтборд» превратится в «2 R 4», а такое отношение на среднем рисунке действительно есть.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий