Knigionline.co » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

Хотя наша коллекция известных математических структур обширна и необычна и ещё больше их пока не открыто, каждую математическую структуру можно проанализировать на предмет симметричности, и у многих обнаруживаются интересные симметрии. Крайне любопытно, что одним из самых важных открытий в физике стало наличие встроенных симметрий и у нашей физической реальности. Так, законы физики обладают вращательной симметрией, то есть во Вселенной нет выделенного направления, которое можно было бы назвать «верхом». Они также, по-видимому, имеют трансляционную симметрию (относительно сдвига), то есть нет особого места, которое можно было бы назвать центром пространства. Многие из упомянутых выше пространств обладают красивыми симметриями, порой совпадающими с наблюдаемыми симметриями физического мира. Например, евклидово пространство обладает как вращательной (нельзя обнаружить различия, если пространство поворачивается), так и трансляционной симметрией (нельзя обнаружить отличия, если пространство сдвигается). У четырёхмерного пространства Минковского ещё больше симметрий, и нельзя обнаружить различий, если выполнен обобщённый поворот между пространственным и временным измерениями (Эйнштейн показал, что именно поэтому кажется, что время замедляется, когда вы движетесь с околосветовой скоростью). В XX веке было открыто множество более тонких симметрий природы. Они лежат в основе эйнштейновских теорий относительности, квантовой механики и Стандартной модели элементарных частиц.

Обратите внимание: свойства симметрии, столь важные для физики, появляются именно благодаря отсутствию собственных свойств у «строительных блоков» реальности, то есть из самой сути того, что значит для неё быть математической структурой. Если выкрасить часть бесцветной сферы в жёлтый, её вращательная симметрия будет нарушена. Подобным образом, если бы точки трёхмерного пространства обладали свойствами, которые делали бы одни точки внутренне отличными от других, пространство утратило бы свою вращательную и трансляционную симметрию. «Меньше — это больше» в том смысле, что чем меньше свойств имеют точки, тем больше симметрий у пространства.

Если гипотеза математической Вселенной верна, то наша Вселенная является математической структурой, и из её описания бесконечно разумный математик должен иметь возможность вывести все физические теории. Как именно он это сделает? Мы не знаем. Но я уверен, что первым его шагом стало бы определение симметрий этой математической структуры.

В начале этой главы вы узнали мрачное предсказание: мои публикации относительно связи между математикой и физикой безумны и похоронят мою карьеру. Пока я изложил лишь часть обоснований того, что внешняя физическая реальность является математической структурой. Это действительно звучит безумно, однако мы лишь разминаемся. Когда мы займёмся следствиями и проверяемыми предсказаниями, вытекающими из гипотезы математической Вселенной, всё станет ещё безумнее! Кроме прочего, мы придём к неизбежному выводу о новом мультиверсе, столь огромном, что в сравнении с ним поблёкнет даже мультиверс III уровня в квантовой механике. Но прежде предстоит ответить на острый вопрос. Наш физический мир меняется во времени, тогда как математические структуры неизменны — они просто существуют. Так как же наш мир может быть математической структурой?

Резюме

• С древних времён людей мучила загадка: почему наш физический мир можно успешно описать с помощью математики.

• Физики продолжают открывать в природе формы, схемы и закономерности, которые удаётся описывать математическими уравнениями.

• Ткань нашей физической реальности содержит десятки безразмерных чисел, исходя из которых, в принципе, можно вычислить все измеримые постоянные.

• Некоторые физические сущности, например пустое пространство, элементарные частицы и волновая функция, кажутся чисто математическими в том смысле, что все присущие им свойства являются математическими.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий