Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

Мы знаем, что свет распространяется в воде медленнее, чем в воздухе; медленнее он распространяется и в стекле (с которым нам гораздо проще иметь дело!). Поэтому, поместив стекло нужной толщины на кратчайшем пути, проходящем через М, мы можем сделать так, что время для этой траектории будет в точности равно времени для траектории, проходящей через А. Траектории, соседние с М, чуть длиннее, и там не потребуется такое толстое стекло (см. рис. 36). Чем ближе мы подходим к А, тем тоньше должно быть стекло, которое надо ставить, чтобы замедлить свет. Если мы все тщательно рассчитаем и подберем для каждой траектории стекло нужной толщины, чтобы увеличить время движения, то все интервалы времени получатся одинаковыми. Когда мы нарисуем стрелки для каждого пути, по которому мог бы пойти свет, мы увидим, что нам удалось одинаково развернуть все стрелки – а ведь этих стрелочек миллионы – и конечный результат будет представлять собой необыкновенно длинную, просто громадную результирующую стрелку! Вы, конечно, догадались, что я описываю: это фокусирующая линза. Уравнивая все интервалы времени, мы можем фокусировать свет – мы можем получить очень высокую вероятность того, что свет попадет в определенную точку, и очень низкую – что он появится где-нибудь еще.

Рис. 36. Природу можно «обмануть», замедлив свет, идущий по более коротким траекториям. Для этого используется стекло такой толщины, чтобы движение по всем траекториям занимало одно и то же время. При этом все стрелки указывают в одном направлении и дают огромную результирующую стрелку – очень много света! Такое стекло, служащее для увеличения вероятности того, что свет из источника соберется в одной точке, называется фокусирующей линзой.

Я привел эти примеры, чтобы показать вам, как квантовая электродинамика, которая на первый взгляд кажется абсурдной, лишенной причинности, наглядного механизма и не имеющей отношения к реальности, тем не менее воспроизводит явления, с которыми вы хорошо знакомы: отражение света от зеркала, преломление света при переходе из воздуха в воду, фокусирование света линзой. Она также воспроизводит и другие явления, которых вы, вероятно, и не наблюдали – такие, как дифракция на решетке, и целый ряд других вещей. На самом деле теория успешно объясняет все световые явления.

Я показал вам, как вычислять вероятность события, которое может произойти различными взаимоисключающими способами: мы рисуем стрелку для каждого способа, которым может произойти событие, и складываем стрелки. «Сложение стрелок» означает, что стрелки соединяются так, что голова одной примыкает к хвосту другой, и проводится «результирующая стрелка». Квадрат полученной результирующей стрелки представляет собой вероятность события.

Чтобы вы смогли полнее почувствовать «вкус» квантовой теории, я хочу теперь показать вам, как физики вычисляют вероятность составных событий, т. е. таких событий, которые можно разбить на последовательность отдельных этапов, или таких, которые состоят из некоторого числа независимых событий.

Пример составного события можно получить, видоизменив наш первый эксперимент, в котором мы направляли красные фотоны на единственную поверхность стекла и измеряли частичное отражение. Вместо того чтобы помещать в А фотоумножитель (см. рис. 37), поставим туда экран с отверстием, через которое будут пролетать фотоны, достигшие точки А. Далее, поместим в В стеклянную пластинку, а в С фотоумножитель. Как вычислить вероятность того, что фотон попадет из источника в С?

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий