Knigionline.co » Наука, Образование » Наша математическая вселенная. В поисках фундаментальной природы реальности

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк (2014)

Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Год:
    2014
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Серия:
  • Язык:
    Русский
  • Перевел:
    Александр Сергеев
  • Издательство:
    Corpus (АСТ)
  • Страниц:
    244
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Галилео Галилео галилевной заметил, что Галактика – это книга, напечатанная на языке алгебры. Макс Тегмарк предполагает, что наш физический мирок в некотором смысле и есть алгебра. Известный астроном, профессор Массачусетского технического института приглашёет читателей присоедениться к поискам основополагающей природы действительности и ведет за собой через нескончаемое пространство и времечко – от микрокосма молекулярных частиц к микрокосму Вселенной. Если же индивидуум, обладающий уменьем перевоплощаться и уподобляться чему угодно, сам прибудет в наше княжество, желая продемонстрировать нам свои творения, мы покоримся перед ним как перед чем-то священным, поразительным и приятным, но скажем, что такого индивидуума у нас в государстве не бытует и что не дозволено там таким становиться, да и отошлем его в иное государство, умастив ему замглавы благовониями и венчав шерстяной перевязью, а сами удовольствуемся, по умозаключениям пользы, менее суровым, хотя бы и более приятным прозаиком и творцом преданий, который подражал бы у нас методу выражения индивидуума порядочного.

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк читать онлайн бесплатно полную версию книги

Хотя математические структуры в мультиверсе IV уровня не соединены каким-либо физически осмысленным образом, на метауровне между ними много интересных отношений. Например, мы только что разобрали, как одна структура может быть объединением других. Или: одна структура может в некотором смысле описывать другую. Элементы первой могут соответствовать отношениям во второй, а отношения в первой описывать, что происходит при комбинировании отношений во второй. В этом смысле содержащая 24 отношения структура «повороты куба» (рис. 12.4) описывается структурой, которую математики называют «группа вращений куба». Её 24 элемента соответствуют всем возможным поворотам, сохраняющим идеальный куб внешне неизменным. Множество математических структур обладает симметриями куба и, таким образом, имеет основания считаться кубами — например структуры, элементы которых соответствуют граням, вершинам или рёбрам куба, а отношения указывают, как повороты переупорядочивают эти элементы, либо говорят, какие из них чьими соседями являются.

Ограничения, накладываемые на мультиверс IV уровня: неразрешимость, невычислимость и неопределённость

Насколько велик мультиверс IV уровня? Прежде всего, существует бесконечно много конечных математических структур: их так же бесконечно много, как и чисел: 1, 2, 3, …, поскольку все их можно перечислить в одном пронумерованном списке. Но сколько в мультиверсе IV уровня бесконечных математических структур, где каждая состоит из бесконечного множества элементов? Мы видели, что некоторые бесконечные структуры также могут быть заданы и включены в основной список наряду с конечными структурами за счёт использования компьютерных программ, определяющих их отношения. Однако включение бесконечности вызывает множество онтологических проблем. Чтобы убедиться в этом, рассмотрим математическую структуру, где элементами являются числа 1, 2, 3, …, над которыми определены три отношения (функции) — правила, которые получают на входе числа и определяют новое число согласно следующим определениям:

1. P(n) — для данного числа n, P(n) обозначает наименьшее простое число, большее чем n.

2. T(n) — для данного числа n, T(n) обозначает наименьшее простое число-близнец, большее n (парное простое число — такое, что ближайшее к нему число-близнец отличается от него на 2; примером простых чисел-близнецов служат числа 11 и 13).

3. H(m,n) — для данных двух чисел, m и n, H(m,n) равно 0, если m-ая компьютерная программа в нашем основном списке всех компьютерных программ будет работать бесконечно, если ей на вход подать число n, и H(m, n) равно 1, если, напротив, эта программа завершит работу, сделав конечное число шагов.

Подходит ли эта структура для включения в качестве члена в мультиверс IV уровня, или она недостаточно корректно определена? Первая функция, P(n), совершенно замечательна: нетрудно написать программу, которая начинает проверять, являются ли следующие за n числа простыми, и останавливается, как только находит такое. У нас есть гарантия, что эта программа остановится после конечного числа шагов, поскольку известно, что существует бесконечно много простых чисел (это доказал ещё Евклид). Так что P(n) — пример вычислимой функции.

Вторая функция, T(n), хитрее. Легко написать программу, которая проверяет каждое число, следующее за n, на предмет того, не является ли оно простым-близнецом. Но если подставить число n больше, чем 37 568 016 956 852666 669 —1 (это самое большое простое число-близнец, известное сейчас), то нет гарантии, что программа когда-нибудь остановится и даст ответ. Несмотря на все усилия математиков, мы до сих пор не знаем, бесконечно ли количество простых чисел-близнецов. Так что мы не знаем, является ли T(n) вычислимой, а значит, и строго определённой функцией. Таким образом, остаётся под вопросом, можно ли математическую структуру, содержащую такое неаккуратно заданное отношение, считать корректно определённой.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий